Package: pcev (via r-universe)

October 16, 2024

Title Principal Component of Explained Variance

Version 2.2.2

Description Principal component of explained variance (PCEV) is a statistical tool for the analysis of a multivariate response vector. It is a dimension- reduction technique, similar to Principal component analysis (PCA), that seeks to maximize the proportion of variance (in the response vector) being explained by a set of covariates.

Depends R (>= 3.0.0)

Imports RMTstat, stats, corpcor

License GPL (>=2)

LazyData true

URL http://github.com/GreenwoodLab/pcev

BugReports http://github.com/GreenwoodLab/pcev/issues

Suggests knitr, testthat

VignetteBuilder knitr

RoxygenNote 6.1.0

Repository https://greenwoodlab.r-universe.dev

RemoteUrl https://github.com/greenwoodlab/pcev

RemoteRef HEAD

RemoteSha f54217f17f6154f4ac61459e6095215460e50c2e

Contents

peev-package	2
computePCEV	2
stimatePcev	4
nethylation	5
PcevObj	6
permutePval	6
oysPval	7
vilksPval	8

Index

pcev-package

pcev: A package for computing principal components of explained variance.

Description

PCEV is a statistical tool for the analysis of a multivariate response vector. It is a dimensionreduction technique, similar to Principal Components Analysis (PCA), which seeks the maximize the proportion of variance (in the response vector) being explained by a set of covariates.

pcev functions

estimatePcev computePCEV PcevObj permutePval wilksPval roysPval

computePCEV

Principal Component of Explained Variance

Description

computePCEV computes the first PCEV and tests its significance.

Usage

```
computePCEV(response, covariate, confounder, estimation = c("all",
  "block", "singular"), inference = c("exact", "permutation"),
  index = "adaptive", shrink = FALSE, nperm = 1000,
  na_action = "fail", Wilks = FALSE)
```

Arguments

response	A matrix of response variables.
covariate	An array or a data frame of covariates.
confounder	An array or data frame of confounders.
estimation	Character string specifying which estimation method to use: "all", "block" or "singular". Default value is "all".
inference	Character string specifying which inference method to use: "exact" or "permutation" Default value is "exact".
index	Only used if estimation = "block". Default value is "adapative". See de- tails.
shrink	Should we use a shrinkage estimate of the residual variance? Default value is FALSE.
nperm	The number of permutations to perform if inference = "permutation" or for the Tracy-Widom empirical estimate (if estimation = "singular").

10

na_action	how NAs are treated. The default is to raise an error. See details.
Wilks	Should we use a Wilks test instead of Roy's largest test? This is only imple-
	mented for a single covariate and with estimation = "all".

Details

This is the main function. It computes the PCEV using either the classical method, block approach or singular. A p-value is also computed, testing the significance of the PCEV.

The p-value is computed using either a permutation approach or an exact test. The implemented exact tests use Wilks' Lambda (only for a single covariate) or Roy's Largest Root. The latter uses Johnstone's approximation to the null distribution. Note that for the block approach, only p-values obtained from a permutation procedure are available.

When estimation = "singular", the p-value is computed using a heuristic: using the method of moments and a small number of permutations (i.e. 25), a location-scale family of the Tracy-Widom distribution of order 1 is fitted to the null distribution. This fitted distribution is then used to compute p-values.

When estimation = "block", there are three different ways of specifying the blocks: 1) if index is a vector of the same length as the number of columns in response, then it is used to match each response to a block. 2) If index is a single positive integer, it is understood as the number of blocks, and each response is matched to a block randomly. 3) If index = "adaptive" (the default), the number of blocks is chosen so that there are about n/2 responses per block, and each response is match to a block randomly. All other values of index should result in an error.

By default, missing values are not allowed. This can be relaxed with na_action. If na_action = "omit", then all rows with at least one missing value will be removed from response before computation. If na_action = "column", then the estimation of the linear model parameters is done column-wise with the non-missing value. This approach maximises the information. Note that missing values are still not allowed in covariate and confounder.

Value

An object of class Pcev containing the first PCEV, the p-value, the estimate of the shrinkage factor, etc.

See Also

estimatePcev

Examples

```
set.seed(12345)
Y <- matrix(rnorm(100*20), nrow=100)
X <- rnorm(100)
pcev_out <- computePCEV(Y, X)
pcev_out2 <- computePCEV(Y, X, shrink = TRUE)</pre>
```

estimatePcev

Description

estimatePcev estimates the PCEV.

Usage

```
estimatePcev(pcevObj, ...)
## Default S3 method:
estimatePcev(pcevObj, ...)
## S3 method for class 'PcevClassical'
estimatePcev(pcevObj, shrink, index, ...)
## S3 method for class 'PcevBlock'
estimatePcev(pcevObj, shrink, index, ...)
## S3 method for class 'PcevSingular'
estimatePcev(pcevObj, shrink, index, ...)
```

Arguments

pcev0bj	A pcev object of class PcevClassical, PcevBlock or PcevSingular
•••	Extra parameters.
shrink	Should we use a shrinkage estimate of the residual variance?
index	If pcev0bj is of class PcevBlock, index is a vector describing the block to which individual response variables correspond.

Value

A list containing the variance components, the first PCEV, the eigenvalues of $V_R^{-1}V_M$ and the estimate of the shrinkage parameter ρ

See Also

computePCEV

methylation

Description

A dataset containing methylation values for cell-separated samples. The methylation was measured using bisulfite sequencing. The data also contains the genomic position of these CpG sites, as well as a binary phenotype (i.e. whether the sample comes from a B cell).

Usage

methylation pheno position index pheno2 position2 methylation2

Format

The data comes in four objects:

methylation Matrix of methylation values at 5,986 sites measured on 40 samples
pheno Vector of phenotype, indicating whether the sample comes from a B cell
position Data frame recording the position of each CpG site along the chromosome
index Index vector used in the computation of PCEV-block
methylation2 Matrix of methylation values at 1000 sites measured on 40 samples
pheno2 Vector of phenotype, indicating the cell type of the sample (B cell, T cell, or Monocyte)
position2 Data frame recording the position of each CpG site along the chromosome

Details

Methylation was first measured at 24,068 sites, on 40 samples. Filtering was performed to keep the 25% most variable sites. See the vignette for more detail.

A second sample of the methylation dataset was extracted. This second dataset contains methylation values at 1000 CpG dinucleotides.

Source

Tomi Pastinen, McGill University, Genome Quebec.

Pcev0bj

Description

PcevClassical, PcevBlock and PcevSingular create the pcev objects from the provided data that are necessary to compute the PCEV according to the user's parameters.

Usage

PcevClassical(response, covariate, confounder)

PcevBlock(response, covariate, confounder)

PcevSingular(response, covariate, confounder)

Arguments

response	A matrix of response variables.
covariate	A matrix or a data frame of covariates.
confounder	A matrix or data frame of confounders

Value

A peev object, of the class that corresponds to the estimation method. These objects are lists that contain the data necessary for computation.

See Also

estimatePcev, computePCEV

permutePval

Permutation p-value

Description

Computes a p-value using a permutation procedure.

roysPval

Usage

```
permutePval(pcevObj, ...)
## Default S3 method:
permutePval(pcevObj, ...)
## S3 method for class 'PcevClassical'
permutePval(pcevObj, shrink, index, nperm, ...)
## S3 method for class 'PcevBlock'
permutePval(pcevObj, shrink, index, nperm, ...)
## S3 method for class 'PcevSingular'
permutePval(pcevObj, shrink, index, nperm, ...)
```

Arguments

pcev0bj	A pcev object of class PcevClassical or PcevSingular PcevBlock
	Extra parameters.
shrink	Should we use a shrinkage estimate of the residual variance?
index	If pcev0bj is of class PcevBlock, index is a vector describing the block to which individual response variables correspond.
nperm	The number of permutations to perform.

roysPval

Roy's largest root exact test

Description

In the classical domain of PCEV applicability this function uses Johnstone's approximation to the null distribution of 'Roy's Largest Root statistic. It uses a location-scale variant of the Tracy-Widom distribution of order 1.

Usage

```
roysPval(pcevObj, ...)
## Default S3 method:
roysPval(pcevObj, ...)
## S3 method for class 'PcevClassical'
roysPval(pcevObj, shrink, index, ...)
## S3 method for class 'PcevSingular'
roysPval(pcevObj, shrink, index, nperm, ...)
```

```
## S3 method for class 'PcevBlock'
roysPval(pcevObj, shrink, index, ...)
```

Arguments

pcevObj	A pcev object of class PcevClassical or PcevBlock
	Extra parameters.
shrink	Should we use a shrinkage estimate of the residual variance?
index	If pcev0bj is of class PcevBlock, index is a vector describing the block to which individual response variables correspond
nperm	Number of permutations for Tracy-Widom empirical estimate.

Details

Note that if shrink is set to TRUE, the location-scale parameters are estimated using a small number of permutations.

```
wilksPval
```

Wilks' lambda exact test

Description

Computes a p-value using Wilks' Lambda.

Usage

```
wilksPval(pcevObj, ...)
## Default S3 method:
wilksPval(pcevObj, ...)
## S3 method for class 'PcevClassical'
wilksPval(pcevObj, shrink, index, ...)
## S3 method for class 'PcevSingular'
wilksPval(pcevObj, shrink, index, ...)
## S3 method for class 'PcevBlock'
```

wilksPval(pcev0bj, shrink, index, ...)

Arguments

pcev0bj	A pcev object of class PcevClassical or PcevBlock
	Extra parameters.
shrink	Should we use a shrinkage estimate of the residual variance?
index	If pcevObj is of class PcevBlock, index is a vector describing the block to
	which individual response variables correspond.

wilksPval

Details

The null distribution of this test statistic is only known in the case of a single covariate, and therefore this is the only case implemented.

Index

* datasets methylation, 5 computePCEV, 2, 2, 4, 6 estimatePcev, 2, 3, 4, 6 index (methylation), 5 methylation, 5 methylation2 (methylation), 5 pcev-package, 2 PcevBlock (PcevObj), 6

PcevClassical (PcevObj), 6 PcevObj, 2, 6 PcevSingular (PcevObj), 6 permutePval, 2, 6 pheno (methylation), 5 pheno2 (methylation), 5 position (methylation), 5 position2 (methylation), 5

roysPval, 2, 7

wilksPval, 2, 8