
Principal Component of Explained Variance

Maxime Turgeon

November 15, 2024

This package implements the dimension-reduction technique known as Prin-
cipal Component of Explained Variance (PCEV), which is similar in spirit to
Principal Component Analysis (PCA). The theoretical details are given in the
next section. This is followed by a description of the user interface of the package
pcev, and the last section presents a data analysis using this approach.

1 General theoretical framework

We consider the following setting: let Y be a multivariate phenotype of dimen-
sion p (e.g. methylation values at CpG sites, or brain imaging measured at p
locations in the brain), let X be a q-dimensional vector of covariates of interest
(e.g.: smoking, cell type or SNPs) and let C be an r-dimensional vector of con-
founders. We assume that the relationship between Y and X can be represented
via a linear model

Y = BX + ΓC + E,

where B and Γ are p × q and p × r matrices of regression coefficients for the
covariates of interest and confounders, respectively, and E ∼ N(0, σ) is a vector
of residual errors. This model assumption allows us to decompose the total
variance of Y as follows:

Var(Y) = Var(BX) + Var(ΓC) + Var(E)

= BVar(X)BT + ΓVar(C)ΓT +Σ

= VM + VC + VR,

where VM = BVar(X)BT is the model component and VR = Σ is the residual
component. PCEV seeks a linear combination of outcomes, wTY , which max-
imises the ratio h2(w) of variance being explained by the covariates X, such
that:

h2(w) =
Var(wTBX)

Var(wTE)

=
wTVMw

wTVRw
.

1

PCEV thus seeks the vector w which maximises the criterion h2(w). It fol-
lows from a Lagrange multiplier-type argument that w is the solution to the
generalised eigenvector problem

VMw = λVRw,

and therefore standard linear algebraic results can be used to get a closed form
for wPCEV := argmaxw h2(w).

1.1 High-dimensional response vector

When p is larger than the sample size, a näıve implementation of PCEV will
fail. For this reason, we proposed a novel alternative, namely a block approach
to the estimation of PCEV. Assume we can partition Y into blocks (or clusters)
in such a way that the number of components in a given block is small enough
(i.e. smaller than n). We can then perform PCEV and get a linear combination
Ỹj of the traits belonging to the jth block, for each block j = 1, . . . , b. We then
obtain a new multivariate pseudo-phenotype:

Ỹ = (Ỹ1, . . . , Ỹb),

on which we can again perform PCEV.
Although one might think that this stepwise approach is an ad-hoc extension

of the original PCEV approach, it has nonetheless a very appealing and relevant
mathematical property, described in the following result:

Theorem 1.1. Assume one can partition the outcomes Y into blocks in such a
way that blocks are uncorrelated (i.e. outcomes lying in different blocks are un-
correlated). Then the linear combination (PCEV) obtained from the traditional
approach and that obtained from the stepwise block approach described above are
equal.

Another approach to dealing with a high-dimensional response vector is to
replace the classical linear regression estimator of VR by a shrinkage estimator,
e.g. the Ledoit-Wolf linear shrinkage estimator. Both of these approaches, and
a combination of the two, are implemented in this packages.

1.2 Association tests

Two testing procedures are implemented in this package:

1. An asymptotic test, using either Wilks’ Lambda or Roy’s Largest Root
statistic.

2. A permutation test.

Johnstone (2009) derived an approximation of the null distribution of Roy’s
Largest Root; this is what we use in the implementation.

Specific details about which test can be used under a given estimation scheme
are given below, with examples.

2

2 Examples

The main function is computePCEV, and indeed most users will only need this
one function. Its two main parameters are response, which needs to be a n× p
matrix containing the values for the response variables, and covariate, which
can be either an array or a data frame containing the values of the covariates.
Let’s look at a simple example:

library(pcev)

set.seed(12345)

Y <- matrix(rnorm(100*20), nrow=100)

X <- rnorm(100)

pcev_out <- computePCEV(Y, X)

pcev_out

##

Principal component of explained variance

##

100 observations, 20 response variables

##

Estimation method: all

Inference method: exact

(performed using Roy's largest root test)

P-value obtained: 0.8430205

##

Variable importance factors (truncated)

0.633 0.308 0.249 0.243 0.220 0.215 0.210 0.192 0.183 0.177

The default behaviour of the function is to use the classical approach to
PCEV (i.e. no block) and use Roy’s Largest Root test. This test works for
an arbitrary number of covariates. On the other hand, when there is only one
covariate, we can also use Wilks’ Lambda test, whose null distribution is known
exactly in this setting:

pcev_out2 <- computePCEV(Y, X, Wilks=TRUE)

pcev_out2

##

Principal component of explained variance

##

100 observations, 20 response variables

##

Estimation method: all

Inference method: exact

3

(performed using Wilks' lambda test)

P-value obtained: 0.8104

##

Variable importance factors (truncated)

0.633 0.308 0.249 0.243 0.220 0.215 0.210 0.192 0.183 0.177

The output also gives the 10 highest variable importance factors (defined as
the correlation between a response variable and the PCEV, in absolute value).

There is also the possibility of using the Ledoit-Wolf linear shrinkage esti-
mator for the residual variance component:

pcev_out3 <- computePCEV(Y, X, shrink=TRUE)

pcev_out3

##

Principal component of explained variance

##

100 observations, 20 response variables

##

Estimation method: all

Inference method: exact

(performed using Roy's largest root test)

P-value obtained: 0.7770962

##

Shrinkage parameter rho was estimated at 1

##

Variable importance factors (truncated)

0.672 0.377 0.332 0.292 0.278 0.261 0.240 0.232 0.222 0.212

The p-value is computed using a modification of Johnstone’s approxima-
tion: a small number of permutations are performed1, and for each permutation
Roy’s Largest Root statistic is computed. Using these values, the parameters
of a location-scale variant of the Tracy-Widom distribution of order 1 are then
estimated using Maximum Likelihood, and this distribution is used to compute
a p-value. There is currently no theoretical justification for doing this, but
preliminary empirical results look promising.

3 Data analysis

Finally, we will show how to use the block approach to PCEV using a real data
analysis. We have methylation levels of 5,986 CpG sites, measured on 40 samples
using bisulfite sequencing2. Each sample corresponds to one of three cell types:
B cells (8 samples), T cells (19 samples), and monocytes (13 samples). Note

1This is set at 25. Currently, there is no way for the user to change this number.
2The data was knidly provided by Tomi Pastinen, McGill University

4

that the CpG sites are situated aroung the BLK gene, which is known to be
differentially methylated across cell types. First, we load the data:

data(methylation)

data(pheno)

data(position)

The phenotype of interest in binary: X = 1 if the sample comes from a B
cell, and X = 0 otherwise. We also have information about the genomic position
of each CpG site.

First, we will look at a Manhattan plot of the data (Figure 1). Recall that
the x-axis corresponds to the genomic position of a CpG, and the y-axis to the
negative log of the p-value for the univariate association. As we can see, there
is small region around 11.3 Mb with a strong univariate signal; this corresponds
to the DMR. The code for producing the plot is given below:

Compute univariate p-values

fit <- lm(methylation ~ pheno)

pval <- vapply(summary(fit), function(sum) {
pvalue <- sum$coef[2,4]

return(pvalue)

}, numeric(1))

Manhattan plot univariate

plot(position$Pos/1e6, -log10(pval), xlab="Position (Mb)",

ylab="-log10 pvalue", pch=19, cex=0.5)

abline(h=-log10(8.3*10^-6), lty=2)

Since the number of CpG sites is much greater than the sample size, we can-
not use the classical approach to PCEV. Instead we will use the block approach.
A natural to define these blocks is to use genomic distance. This can be easily
done using the function clusterMaker in the package bumphunter:

Break the region into sub-regions of 500 kB

cl <- bumphunter::clusterMaker(chr=position$Chr,

pos=position$Pos,

assumeSorted=TRUE,

maxGap = 500)

Some blocks are too big... put limit at 30

index <- cl

maxInd <- max(index) + 1

blockLengths <- table(index)

while(sum(blockLengths > 30) > 0) {

5

10.5 11.0 11.5 12.0

0
2

4
6

8
10

12

Position (Mb)

−
lo

g1
0

pv
al

ue

Figure 1: Manhattan plot

6

for (j in unique(index)) {
p <- length(index[index == j])

if (p > 30) {
q <- floor(p/2); r <- p - q

index[index == j] <- c(rep_len(maxInd, q),

rep_len(maxInd + 1, r))

maxInd <- maxInd + 2

}
}
blockLengths <- table(index)

}

Re-index so that we have consecutive indices

cl <- index

index <- cl

counter <- 0

for(j in sort(unique(cl))) {
counter <- counter + 1

index[index == j] <- counter

}

Another way to define the blocks would be hierarchical clustering. In any
case, since we do not want this package to depend on bumphunter, we provide
the vector of indices:

data(index)

table(table(index))

##

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

303 160 72 68 56 31 28 30 17 18 13 9 15 6 17 24 14 15 13 13

21 22 23 24 25 26 27 28 29 30

8 9 4 9 4 4 3 4 5 8

As we can see, there are no more than 30 CpG sites per block, and we have
a total of 980 blocks. We are now ready to compute the PCEV:

pcev_out <- computePCEV(methylation, covariate = pheno,

estimation = "block",

inference = "permutation",

index = index, nperm = 10)

Selecting estimation by block.

pcev_out

7

##

Principal component of explained variance

##

40 observations, 5986 response variables

##

Estimation method: block

Inference method: permutation

P-value obtained: < 0.1

##

Variable importance factors (truncated)

0.867 0.850 0.838 0.836 0.825 0.822 0.822 0.820 0.819 0.810

We used 10 permutations to compute the p-value, which is of course very
low. Using 10,000 permutations, we got an approximate p-value of 4× 10−4.

We can construct something resembling a Manhattan plot, but where the
univariate p-values are replaced by the variable importance factor. Figure 2
shows this type of plot for our particular data. We have also identified the BLK
gene using a red line:

Manhattan plot VIMP

BLK_boundaries <- c(11235000, 11385000)

plot(position$Pos/1e6, pcev_out$VIMP, xlab = "Position (Mb)",

ylab = "Variable Importance", pch = 19, cex = 0.5,

ylim = c(0,1))

lines(x = BLK_boundaries/1e6, y = rep_len(0.9,2),

lwd = 3, col = 'red')

As we can see, the VIMP can serve as surrogates for the univariate p-values
when it comes to identifying the most important response variables. In our case,
it is able to capture the gene of interest.

8

10.5 11.0 11.5 12.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Position (Mb)

V
ar

ia
bl

e
Im

po
rt

an
ce

Figure 2: Manhattan-VIMP plot

9

4 Session Info

sessionInfo()

R version 4.4.2 (2024-10-31)

Platform: x86_64-pc-linux-gnu

Running under: Ubuntu 24.04.1 LTS

##

Matrix products: default

BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3

LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0

##

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

time zone: Etc/UTC

tzcode source: system (glibc)

##

attached base packages:

[1] stats graphics grDevices utils datasets methods base

##

other attached packages:

[1] pcev_2.2.2

##

loaded via a namespace (and not attached):

[1] compiler_4.4.2 tools_4.4.2 maketools_1.3.1 buildtools_1.0.0

[5] highr_0.11 knitr_1.49 xfun_0.49 RMTstat_0.3.1

[9] sys_3.4.3 evaluate_1.0.1

10

